

40G QSFP+ to 8 x LC Connector Breakout Optical Cable

Description

QSFP+ to 8 x LC Connector Breakout Optical Cable are a high performance, low power consumption, long reach interconnect solution supporting 40G Ethernet, fiber channel and PCIe. It is compliant with the QSFP MSA and IEEE P802.3ba 40GBASE-SR4. QSFP+ Breakout Cable is an assembly of 4 full-duplex lanes, where each lane is capable of transmitting data at rates up to 10Gb/s, providing an aggregated rate of 40Gb/s. QSFP+ Breakout Cable are suitable for short distances and offer a highly cost-effective way to connect within racks and across adjacent racks. These breakout cables connect to a 40G QSFP+ port of a switch on one end and to four 10G SFP+ Transceivers of a switch on the other end.

Features

- Full duplex 4 channel 850nm parallel active optical cable
- Transmission data rate up to 10.3Gbit/s per channel
- SFF-8436 QSFP+ compliant
- Hot pluggable electrical interface
- Differential AC-coupled high speed data interface
- 4 channels 850nm VCSEL array
- 4 channels PIN photo detector array
- Maximum link length of 300m on OM3 Multimode Fiber (MMF)and 400m on OM4 MMF
- Low power consumption
- Housing isolated from connector ground
- Operating case temperature 0°C to +70°C
- 3.3V power supply voltage
- RoHS 6 compliant

Applications

- Infiniband transmission at 4ch SDR, DDR and QDR
- 40GBASE-SR4 40G Ethernet
- Data Center

38	GND				
37	TX1n		GNI	D 1	
36	TX1n		TX2	:n 2	
35	GND		TX2	2 p (
34	TX3n		GNI	D 4	
33	TX3n		TX4	n 5	
32	GND		TX4	ър 6	
31	I PMode	0	GNI	ד כ	
30	Vcc1	à	Mod	ISelL 8	
29	VccTx	a	Res	etL 9	
28	IntL	- Im I	Vcc	Rx 10	
27	ModPrsl	a	SCL	- 11	
26	GND	g	SDA	12	
25	RX4p	- 0	GNI	D 13	
24	RX4n		RX3	3p 14	
23	GND		RX3	3n 15	
22	RX2p		GNI	D 16	
21	RX2n		RX	lp 17	
20	GND		RX	In 18	
			GN	J 19	
<u></u>	Top Side		Bottom Side	e	
	viewed from lop		Viewed from Bottom		

ModSelL Pin

The ModSelL is an input pin. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP modules on a single 2-wire interface bus. When the ModSelL is "High", the module will not respond to any 2-wire interface communication from the host. ModSelL has an internal pull-up in the module.

ResetL Pin

Reset. LPMode_Reset has an internal pull-up in the module. A low level on the ResetL pin for longer than the minimum pulse length (t_Reset_init) initiates a complete module reset, returning all user module settings to their default state. Module Reset Assert Time (t_init) starts on the rising edge after the low level on the ResetL pin is released. During the execution of a reset (t_init) the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL signal with the Data_Not_Ready bit negated. Note that on power up (including hot insertion) the module will post this completion of reset interrupt without requiring a reset.

LPMode Pin

QSFP AOC operate in the low power mode (less than 1.5 W power consumption) This pin active high will decrease power consumption to less than 1W.

ModPrsL Pin

SHENZHEN TRANSCOM TECHNOLOGY LIMITED / 303, Building 4, Fantasia MIC Plaza, Nanshan District, Shenzhen, China.

ModPrsL is pulled up to Vcc on the host board and grounded in the module. The ModPrsL is asserted "Low" when the module is inserted and deasserted "High" when the module is physically absent from the host Connector.

IntL Pin

IntL is an output pin. When "Low", it indicates a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt by using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled up to Vcc on the host board.

Power Supply Filtering

DIAGNOSTIC MONITORING INTERFACE

Digital diagnostics monitoring function is available on all Transcom QSFP AOCs. A 2-wire serial interface provides user to contact with module.

The structure of the memory is shown in Figure 4. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, such as Interrupt Flags and Monitors. Less time critical time entries, such as serial ID information and threshold settings, are available with the Page Select function. The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a one-time-read for all data related to an interrupt situation. After an interrupt, IntL, has been asserted, the host can read out the flag field to determine the affected channel and type of flag.

QSFP Memory Map

Byte Address	Description	Туре
0	Identifier (1 Byte)	Read Only
1-2	Status (2 Bytes)	Read Only
3-21	Interrupt Flags (31 Bytes)	Read Only
22-33	Module Monitors (12 Bytes)	Read Only
34-81	Channel Monitors (48 Bytes)	Read Only
82-85	Reserved (4 Bytes)	Read Only
86-97	Control (12 Bytes)	Read/Write
98-99	Reserved (2 Bytes)	Read/Write
100-106	Module and Channel Masks (7 Bytes)	Read/Write
107-118	Reserved (12 Bytes)	Read/Write
119-122	Reserved (4 Bytes)	Read/Write
123-126	Reserved (4 Bytes)	Read/Write
127	Page Select Byte	Read/Write

Low Memory Map

Byte Address	Description	Туре
128-175	Module Thresholds (48 Bytes)	Read Only
176-223	Reserved (48 Bytes)	Read Only
224-225	Reserved (2 Bytes)	Read Only
226-239	Reserved (14 Bytes)	Read/Write
240-241	Channel Controls (2 Bytes)	Read/Write
242-253	Reserved (12 Bytes)	Read/Write
254-255	Reserved (2 Bytes)	Read/Write

Mechanical Dimensions

Address	Name	Description	
128	Identifier (1 Byte)	Identifier Type of serial transceiver	
129	Ext. Identifier (1 Byte)	Extended identifier of serial transceiver	
130	Connector (1 Byte)	Code for connector type	
131-138	Transceiver (8 Bytes)	Code for electronic compatibility or optical compatibility	
139	Encoding (1 Byte)	Code for serial encoding algorithm	
140	BR, nominal (1 Byte)	Nominal bit rate, units of 100 Mbits/s	
141	Extended RateSelect Compliance (1 Byte)	Tags for Extended RateSelect compliance	
142	Length SMF (1 Byte)	Link length supported for SM fiber in km	
143	Length E-50 µm (1 Byte)	Link length supported for EBW 50/125 µm fiber, units of 2 m	
144	Length 50 µm (1 Byte)	Link length supported for 50/125 µm fiber, units of 1 m	
145	Length 62.5 µm (1 Byte)	Link length supported for 62.5/125µm fiber, units of 1 m	
146	Length copper (1 Byte)	Link length supported for copper, units of 1 m	
147	Device Tech (1 Byte)	Device technology	
148-163	Vendor name (16 Bytes)	QSFP vendor name (ASCII)	
164	Extended Transceiver (1 Byte)	Extended Transceiver Codes for InfiniBand [†]	
165-167	Vendor OUI (3 Bytes)	QSFP vendor IEEE vendor company ID	
168-183	Vendor PN (16 Bytes)	Part number provided by QSFP vendor (ASCII)	
184-185	Vendor rev (2 Bytes)	Revision level for part number provided by vendor (ASCII)	
186-187	Wavelength (2 Bytes)	Nominal laser wavelength (Wavelength = value / 20 in nm)	
188-189	Wavelength Tolerance (2 Bytes)	Guaranteed range of laser wavelength (+/- value) from Nominal wavelength (Wavelength Tol. = value / 200 in nm)	
190	Max Case Temp (1 Byte)	Maximum Case Temperature in Degrees C	
191	CC_BASE (1 Byte)	Check code for Base ID fields (addresses 128-190)	
192-195	Options (4 Bytes)	Rate Select, TX Disable, TX Fault, LOS	
196-211	Vendor SN (16 Bytes)	Serial number provided by vendor (ASCII)	
212-219	Date code (8 Bytes)	Vendor's manufacturing date code	
220	Diagnostic Monitoring Type (1 Byte)	Indicates which type of diagnostic monitoring is implemented	
221	Enhanced Options (1 Byte)	Indicates which optional enhanced features are implemented	
222	Reserved (1 Byte)	Reserved	
223	CC_EXT	Check code for the Extended ID Fields (addresses 192-222)	
224-255	Vendor Specific (32 Bytes)	Vendor Specific EEPROM	

Memory Map