

# **TS-QS4PM314H01PC**

## 400G-DR4 500m QSFP-DD Transceiver

### **Features:**

- Compliant with IEEE802.3bs standard:
- 400GAUI-8 electrical interface
- Compliant with IEEE 802.3bs standard:
- 400GBASE-DR4 optical interface
- Compliant with QSFP-DD MSA HW Rev 5.1 Type 2 housing with MPO-12 connector
- Compliant with QSFP-DD CMIS Rev 4.0
- Supports 3dB channel insertion loss
- Maximum power consumption 10W
- Case operating temperature 0°C to 70°C
- Two wire serial Interface with digital diagnostic monitoring
- Complies with EU Directive 2011/65/EU (RoHS compliant)
- Class 1 Laser

### **Module Characteristics**

#### Table 1 – Absolute Maximum Ratings

| Parameter                          | Symbol | Min. | Max.    | Unit | Notes |
|------------------------------------|--------|------|---------|------|-------|
| Storage Temperature                | TS     | -40  | 85      | °C   |       |
| Supply Voltage                     | VCC    | -0.5 | 3.6     | V    |       |
| Relative Humidity (non-condensing) | RH     | 5    | 95      | %    |       |
| Control Input Voltage              | VI     | -0.3 | VCC+0.5 | V    |       |

#### **Table 2 – Recommended Operating Conditions**

| Parameter                              | Symbol | Min.  | Typical | Max.  | Unit | Notes |
|----------------------------------------|--------|-------|---------|-------|------|-------|
| Operating Case Temperature             | TOPR   | 0     | -       | 70    | °C   |       |
| Power Supply Voltage                   | VCC    | 3.135 | 3.3     | 3.465 | V    |       |
| Instantaneous peak current at hot plug | ICC_IP | -     | -       | 4000  | mA   |       |
| Sustained peak current at hot plug     | ICC_SP | -     | -       | 3300  | mA   |       |

1 SHENZHEN TRANSCOM TECHNOLOGY LIMITED / Web: www.sz-transcom.com / Tel: +86 755 88278677 / Fax: +86 755 26029402



| Maximum Power Dissipation                      | PD   | - | -      | 0   | W   |      |
|------------------------------------------------|------|---|--------|-----|-----|------|
| Maximum Power Dissipation, Low<br>Power Mode   | PDLP | - | -      | 1.5 | W   |      |
| Signalling Rate per Lane                       | SRL  | - | 53.125 | -   | GBd | PAM4 |
| Two Wire Serial Interface Clock Rate           | -    | - | -      | 400 | kHz |      |
| Power Supply Noise Tolerance (10Hz -<br>10MHz) | -    | - | -      | 66  | mV  |      |
| Rx Differential Data Output Load               | -    | - | 100    | -   | Ohm |      |
| Operating Distance                             | -    | 2 | -      | 500 | m   |      |

#### **Functional Characteristics (Optical)**

The following tables list the performance specifications for the various functional blocks of the integrated optical transceiver module.

#### Table 3 – Transmitter Optical Specifications

| Parameter                                                     | Symbol | Min.   | Typical | Max.   | Unit  | Notes |
|---------------------------------------------------------------|--------|--------|---------|--------|-------|-------|
| Wavelength                                                    | λC     | 1304.5 | 1311    | 1317.5 | nm    |       |
| Side Mode Suppression Ratio                                   | SMSR   | 30     | -       | -      | dB    |       |
| Average Launch Power, each lane                               | AOPL   | -2.9   | -       | 4.0    | dBm   | 1     |
| Outer Optical Modulation Amplitude (OMAouter), each lane      | TOMA   | -0.8   | -       | 4.2    | dBm   | 2     |
| Launch Power in OMAouter minus TDECQ, each lane               | TOMA   | -2.2   | -       | -      | dBm   |       |
| Transmitter and Dispersion Eye Closure for PAM4 (TDECQ), each | TDECQ  | -      | -       | 3.4    | dB    |       |
| lane                                                          |        |        |         |        |       |       |
| TDECQ – 10log10(Ceq)                                          | -      | -      | -       | 3.4    | dB    |       |
| Average Launch Power of OFF Transmitter, each lane            | TOFF   | -      | -       | -15    | dBm   |       |
| Extinction Ratio, each lane                                   | ER     | 3.5    | -       | -      | dB    |       |
| Transmitter transition time                                   | -      | -      | -       | 17     | ps    |       |
| RIN21.40MA                                                    | RIN    | -      | -       | -136   | dB/Hz |       |
| Optical Return Loss Tolerance                                 | ORL    | -      | -       | 21.4   | dB    |       |
| Transmitter Reflectance                                       | TR     | -      | -       | -26    | dB    | 3     |

Note 1: Average launch power, each lane (min) is informative and not the principal indicator of signal strength

Note 2: Even if TDECQ < 1.4dB, OMAouter (min) must exceed this value

Note 3: Transmitter reflectance is defined looking into the transmitter



#### **Table 4 – Receiver Optical Specifications**

| Parameter                                           | Symbol | Min.   | Typical | Max.   | Unit | Notes |
|-----------------------------------------------------|--------|--------|---------|--------|------|-------|
| Wavelength                                          | λC     | 1304.5 | 1311    | 1317.5 | nm   |       |
| Damage Threshold, each lane                         | AOPD   | 5      | -       | -      | dBm  |       |
| Average Receive Power, each lane                    | AOPR   | -5.9   | -       | 4.0    | dBm  | 1     |
| Receive Power (OMAouter), each lane                 | OMAR   | -      | -       | 4.2    | dBm  |       |
| Receiver Reflectance                                | RR     | -      | -       | -26    | dB   |       |
| Receiver Sensitivity (OMAouter), each lane          | SOMA   | -      | -       | -4.4   | dBm  | 2     |
| Stressed Receiver Sensitivity (OMAouter), each lane | SRS    | -      | -       | -1.9   | dBm  | 3     |
| Conditions of stressed receiver sensitivity test    |        |        |         |        |      |       |
| Stressed eye closure for PAM4 (SECQ)                |        |        | 3.4     |        | dB   |       |
| SECQ – 10log10(Ceq), lane under test                | -      | -      | _       | 3.4    | dB   |       |
| OMAouter of each aggressor lane                     |        |        | 4.2     |        | dBm  |       |

Note 1: Note 1: Average receive power, (min) is informative and not the principal indicator of signal strength

Note 2: Receiver sensitivity (OMAouter), each lane (max) is informative and is defined for a transmitter with a value of SECQ up to 3.4 dB.

Note 3: Measured with conformance test signal at TP3 for the BER = 2.4x10-4

## **Functional Characteristics (Electrical)**

|                                                                                                                                                    | 10 .6. 1.        | TT' L C      | 10' 1/        | 1. 4 .41     | TEEE 003 31  |                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|---------------|--------------|--------------|--------------------------------|
| I anie 5 - Electric                                                                                                                                | al Specification | i High Sheer | 1 NIGNAL (COI | mnlight with | IHHH XU/ She | $\Delta (    = \Delta    = X)$ |
| $\mathbf{I} \mathbf{a} \mathbf{D} \mathbf{i} \mathbf{c} \mathbf{J} = \mathbf{D} \mathbf{i} \mathbf{c} \mathbf{c} \mathbf{i} \mathbf{i} \mathbf{c}$ | ai opeenication  | i men opcou  | i Dignai (CU  | mpmane with. |              | TUUUIIUI-UI                    |
|                                                                                                                                                    |                  |              | <b>a</b> \    |              |              |                                |

| Receiver (Module Output)                   |        |      |         |      |      |       |  |  |  |
|--------------------------------------------|--------|------|---------|------|------|-------|--|--|--|
| Parameter                                  | Symbol | Min. | Typical | Max. | Unit | Notes |  |  |  |
| AC common-mode output Voltage<br>(RMS)     |        | -    | -       | 17.5 | mV   |       |  |  |  |
| Differential output Voltage                |        | -    | -       | 900  | mV   |       |  |  |  |
| Near-end Eye height, differential          |        | 70   | -       | -    | mV   |       |  |  |  |
| Far-end Eye height, differential           |        | 30   | -       | -    | mV   |       |  |  |  |
| Far end pre-cursor ratio                   |        | -4.5 | -       | 2.5  | %    |       |  |  |  |
| Differential Termination Mismatch          |        | -    | -       | 10   | %    |       |  |  |  |
| Transition Time (min, 20% to 80%)          |        | 9.5  | -       | -    | ps   |       |  |  |  |
| DC common mode Voltage                     |        | -350 | -       | 2850 | mV   |       |  |  |  |
| Transmitter (Module                        | Input) |      |         |      |      |       |  |  |  |
| Parameter                                  | Symbol | Min. | Typical | Max. | Unit | Notes |  |  |  |
| Differential pk-pk input Voltage tolerance |        | 900  | -       | -    | mV   |       |  |  |  |
| Differential termination mismatch          |        | -    | -       | 10   | %    |       |  |  |  |
| Single-ended voltage tolerance range       |        | -0.4 | -       | 3.3  | V    |       |  |  |  |
| DC common mode Voltage                     |        | -350 | -       | 2850 | mV   |       |  |  |  |



#### Table 6 – Electrical Specification Low Speed Signal (compliant with QSFP-DD HW Rev 5.1)

| Parameter                    | Symbol | Min.    | Max.    | Unit | Condition |
|------------------------------|--------|---------|---------|------|-----------|
| Module output SCL and SDA    | VOL    | 0       | 0.4     | V    |           |
|                              | VIL    | -0.3    | VCC*0.3 | V    |           |
| Module Input SCL and SDA     | VIH    | VCC*0.7 | VCC+0.5 | V    |           |
|                              | VIL    | -0.3    | 0.8     | V    |           |
| InitMode, ResetL and ModSelL | VIH    | 2       | VCC+0.3 | V    |           |
|                              | VOL    | 0       | 0.4     | V    |           |
| IntL                         | VOH    | VCC-0.5 | VCC+0.3 | V    |           |

#### **Pin Definitions**









Figure 2 – Active fiber ports in MPO12 connector on module side

#### **Table 7 – Module Pin Definitions**

| Pin# | Logic          | Symbol  | Definition                             | Pin# | Logic | Symbol   | Definition                              |
|------|----------------|---------|----------------------------------------|------|-------|----------|-----------------------------------------|
| 1    |                | GND     | Ground                                 | 39   |       | GND      | Ground                                  |
| 2    | CML-I          | Tx2n    | Transmitter Inverted Data<br>Input     | 40   | CML-I | Tx6n     | Transmitter Inverted<br>Data Input      |
| 3    | CML-I          | Tx2p    | Transmitter Non-inverted<br>Data Input | 41   | CML-I | Тх6р     | Transmitter Non-<br>inverted Data Input |
| 4    |                | GND     | Ground                                 | 42   |       | GND      | Ground                                  |
| 5    | CML-I          | Tx4n    | Transmitter Inverted Data<br>Input     | 43   | CML-I | Tx8n     | Transmitter Inverted<br>Data Input      |
| 6    | CML-I          | Tx4p    | Transmitter Non-inverted<br>Data Input | 44   | CML-I | Tx8p     | Transmitter Non-<br>inverted Data Input |
| 7    |                | GND     | Ground                                 | 45   |       | GND      | Ground                                  |
| 8    | LVTTL-I        | ModSelL | Module Select                          | 46   |       | Reserved |                                         |
| 9    | LVTTL-I        | ResetL  | Module Reset                           | 47   |       | VS1      | Module Vendor<br>Specific 1             |
| 10   |                | VccRx   | +3.3V Power Supply<br>Receiver         | 48   |       | VccRx1   | 3.3V Power Supply                       |
| 11   | LVCMOS<br>-I/O | SCL     | 2-wire serial interface clock          | 49   |       | VS2      | Module Vendor<br>Specific 2             |
| 12   | LVCMOS<br>-I/O | SDA     | 2-wire serial interface data           | 50   |       | VS3      | Module Vendor<br>Specific 3             |
| 13   |                | GND     | Ground                                 | 51   |       | GND      | Ground                                  |
| 14   | CML-O          | Rx3p    | Receiver Non-inverted<br>Data Output   | 52   | CML-O | Rx7p     | Receiver Non-<br>inverted Data Output   |
| 15   | CML-O          | Rx3n    | Receiver Inverted Data<br>Output       | 53   | CML-O | Rx7n     | Receiver Inverted<br>Data Output        |
| 16   |                | GND     | Ground                                 | 54   |       | GND      | Ground                                  |
| 17   | CML-O          | Rx1p    | Receiver Non-inverted<br>Data Output   | 55   | CML-O | Rx5p     | Receiver Non-<br>inverted Data Output   |
| 18   | CML-O          | Rx1n    | Receiver Inverted Data<br>Output       | 56   | CML-O | Rx5n     | Receiver Inverted<br>Data Output        |
| 19   |                | GND     | Ground                                 | 57   |       | GND      | Ground                                  |
| 20   |                | GND     | Ground                                 | 58   |       | GND      | Ground                                  |
| 21   | CML-O          | Rx2n    | Receiver Inverted Data<br>Output       | 59   | CML-O | Rx6n     | Receiver Inverted<br>Data Output        |
| 22   | CML-O          | Rx2p    | Receiver Non-inverted                  | 60   | CML-O | Rx6p     | Receiver Non-                           |



|    |         |          | Data Output                            |    |       |          | inverted Data Output                    |
|----|---------|----------|----------------------------------------|----|-------|----------|-----------------------------------------|
| 23 |         | GND      | Ground                                 | 61 |       | GND      | Ground                                  |
| 24 | CML-O   | Rx4n     | Receiver Inverted Data<br>Output       | 62 | CML-O | Rx8n     | Receiver Inverted<br>Data Output        |
| 25 | CML-O   | Rx4p     | Receiver Non-inverted<br>Data Output   | 63 | CML-O | Rx8p     | Receiver Non-<br>inverted Data Output   |
| 26 |         | GND      | Ground                                 | 64 |       | GND      | Ground                                  |
| 27 | LVTTL-O | ModPrsL  | Module Present                         | 65 |       | NC       | Not connected                           |
| 28 | LVTTL-O | IntL     | Interrupt                              | 66 |       | Reserved |                                         |
| 29 |         | VccTx    | +3.3V Power Supply<br>Transmitter      | 67 |       | VccTx1   | 3.3V Power Supply                       |
| 30 |         | Vcc1     | +3.3V Power Supply                     | 68 |       | Vcc2     | 3.3V Power Supply                       |
| 31 | LVTTL-I | InitMode | Initialization mode                    | 69 |       | Reserved |                                         |
| 32 |         | GND      | Ground                                 | 70 |       | GND      | Ground                                  |
| 33 | CML-I   | Tx3p     | Transmitter Non-inverted<br>Data Input | 71 | CML-I | Tx7p     | Transmitter Non-<br>inverted Data Input |
| 34 | CML-I   | Tx3n     | Transmitter Inverted Data<br>Input     | 72 | CML-I | Tx7n     | Transmitter Inverted<br>Data Input      |
| 35 |         | GND      | Ground                                 | 73 |       | GND      | Ground                                  |
| 36 | CML-I   | Tx1p     | Transmitter Non-inverted<br>Data Input | 74 | CML-I | Tx5p     | Transmitter Non-<br>inverted Data Input |
| 37 | CML-I   | Tx1n     | Transmitter Inverted Data<br>Input     | 75 | CML-I | Tx5n     | Transmitter Inverted<br>Data Input      |
| 38 |         | GND      | Ground                                 | 76 |       | GND      | Ground                                  |



#### **Recommended QSFP-DD Host Board Schematic**



QSFP-DD Optical Module

Figure 3 – Recommended QSFP-DD Host Board Schematic



## Timing

| Parameter                               | Symbol       | Min. | Max. | Unit | Notes |
|-----------------------------------------|--------------|------|------|------|-------|
| MgmtInit Duration                       |              | -    | 2000 | ms   |       |
| ResetL Assert Time                      | t_reset_init | 10   | -    | μs   |       |
| IntL Assert Time                        | ton_IntL     | -    | 200  | ms   |       |
| IntL Deassert Time                      | toff_IntL    | -    | 500  | μs   |       |
| Rx LOS Assert Time (optional fast mode) | ton_losf     | -    | 1    | ms   |       |
| Tx Fault Assert Time                    | ton_Txfault  | -    | 200  | ms   |       |
| Flag Assert Time                        | ton_flag     | -    | 200  | ms   |       |
| Mask Assert Time                        | ton_mask     | -    | 100  | ms   |       |
| Mask Deassert Time                      | toff_mask    | -    | 100  | ms   |       |

#### Table 8 - Timing for Soft Control and Status Functions

### Table 9 – I/O Timing for Squelch and Disable

| Parameter                                        | Symbol      | Min. | Max. | Unit | Notes             |
|--------------------------------------------------|-------------|------|------|------|-------------------|
| Rx Squelch Assert Time                           | ton_Rxsq    | -    | 150  | ms   |                   |
| Tx Squelch Assert Time                           | ton_Txsq    | -    | 400  | ms   |                   |
| Tx Squelch Deassert Time                         | toff_Txsq   | -    | 1.5  | S    |                   |
| Tx Disable Assert Time (optional fast mode)      | ton_Txdisf  | -    | 3    | ms   |                   |
| Tx Disable Deassert Time<br>(optional fast mode) | toff_Txdisf | -    | 10   | ms   |                   |
| Rx Output Disable Assert Time                    | ton_Rxdis   | -    | 100  | ms   |                   |
| Rx Output Disable Deassert Time                  | toff_Rxdis  | -    | 100  | ms   |                   |
| Squelch Disable Assert Time                      | ton_sqdis   | -    | N/A  |      | Note, not support |
| Squelch Disable Deassert Time                    | toff_sqdis  | -    | N/A  |      | Note, not support |



## **Digital Diagnostics Monitor**

| Parameter                       | Range        | Accuracy | Unit | Calibration |
|---------------------------------|--------------|----------|------|-------------|
| Temperature                     | 0 to 70      | ±3       | °C   | Internal    |
| Voltage                         | 0 to VCC     | 3%       | V    | Internal    |
| Tx Bias Current (Each<br>Lane)  | 0 to 100     | 10%      | mA   | Internal    |
| Tx Output Power (Each<br>Lane)  | -2.9 to +4.0 | ±3       | dB   | Internal    |
| Rx Receive Power (Each<br>Lane) | -5.9 to +4.0 | ±3       | dB   | Internal    |

#### Table 10 – Digital Diagnostics

### **Operation Modes switchover**

The module can work at 4x100G or 1x400G operation mode, it works at 4x100G mode default after powerup, please refer the following guideline for operation modes switch.

If customer want to switch to 1x400G: Step 1. Write A0 page 10h 80h to 0xFF; Step 2. Write A0 page 10h B3h to 0xFF; Step 3. Write A0 page 10h 80h to 0x00.

If customer want to switch to 4x100G: Step 1. Write A0 page 10h 80h to 0xFF; Step 2. Write A0 page 10h 90h to 0xFF; Step 3. Write A0 page 10h 80h to 0x00.



## **Mechanical Diagram**



### **Ordering Information**

**Table 11 - Ordering Information** 

| Part No.         | Application      | Data Rate      | Laser<br>Source | Fiber Type           |
|------------------|------------------|----------------|-----------------|----------------------|
| TS-QS4PM314H01PC | 400GBASE-<br>DR4 | 400GB Ethernet | EML             | Single Mode<br>Fiber |



### Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

### Legal Notice

### **IMPORTANT NOTICE!**

All information contained in this document is subject to change without notice, at Transcom' sole and absolute discretion. Transcom warrants performance of its products to current specifications only in accordance with the company's standard one-year warranty; however, specifications designated as "preliminary" are given to describe components only, and Transcom expressly disclaims any and all warranties for said products, including express, implied, and statutory warranties, warranties of merchantability, fitness for a particular purpose, and non-infringement of proprietary rights. Please refer to the company's Terms and Conditions of Sale for further warranty information.

Transcom assumes no liability for applications assistance, customer product design, software performance, or infringement of patents, services, or intellectual property described herein. No license, either express or implied, is granted under any patent right, copyright, or intellectual property right, and Transcom makes no representations or warranties that the product(s) described herein are free from patent, copyright, or intellectual property rights. Products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. Transcom customers using or selling products for use in such applications do so at their own risk and agree to fully defend and indemnify Transcom for any damages resulting from such use or sale.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Transcom product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Transcom or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Transcom be liable for damages arising directly from any use of the information contained in this document.